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Necessary and sufficient conditions are given for which the stabiliza- 
tion of a linear system is possible under the condition that the integral 
mean-square error (relative to arbitrary initial disturbances) be a 
minimum. An explanation is given for the manifold of initial data for 
which the system can have an optimum stabilization if these conditions 
are satisfied. 

1. Let a control system be described by the equation 

where the xk are phase coordinates, ak’ and bk are constant parameters, 
while u is the guidance action developdd within the control device. ‘Ihe 
system (1.1) can also be written in the matrix form 

Let us assume that at the initial instant to = 0 the coordinates of 
the system are x(O) = x0. As a criterion for an optimum we shall con- 
sider the functional [ 1 1 

.J (u) = y v (u) dt, 
0 

Here V is a positive-definite form. It is required to select the con- 
trol u(n) so that the functional (1.2) will attain the smallest possible 
value. ‘Ihe solution of this problem, the optimum control u0 = q,(x), 
will make the system (1.1) asymptotically stable, and will insure that 
the integral error of J(u,,) in deviation from the trajectory x(t) will 
be a minimum. We are looking for a control not as a function of time t 
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but as a function of the coordinates of the system x1, . . . . x,. ‘Ihis is 
the.problem on the analytical construction of control systems which was 
considered in the works of Letov [ 1 1 . ‘Ihe aim of the present note is to 
determine the conditions under which the given problem has a solution. 

2. Let us consider the question on the existence of an admissible 
control for the system (1.1). 

Definition (2.2). ‘Ihe function u(t) will be said to be an admissible 
control if u(t) satisfies the inequality J(u) < + =. 

We introduce the following notation. If B is an n x ri matrix and c is 
an n-dimensional vector, then the symbol (Bc)i will denote the ith com- 
ponent of their product. Furthermore, let the symbol (a-b) stand for the 

scalar (inner) product of the vectors a and b. 

Let us assume at first that the vectors 

b, Ab, . . ., A”-‘b (2.1) 

are linearly independent. In this case one can construct an admissible 
control for an arbitrary initial condition x0. 

In fact, if x0 is a fixed point, then for every t > 0 there exists a 
number N(zo, t) such that 

t 

min 
(I.&)=-l s 

(1 . F-l (4 b)’ dr > & , i li2 #0 
0 i=l 

Here, F(r) is the fundamental matrix of the solution of the system 
(1.1) when U = 0. This means 12, p. 629 1 that there exists a control 
ul(v) which transfers the point x0 into the origin of the coordinate 
system during the time r = t, whereby 

Setting 

and evaluating J(P), we arrive at the conclusion that u*(r) is an 
admissible control. 

Next, let us assume that there are only k(k < n) linearly independent 
vectors among the vectors (2.1). It is not difficult to see that the 
first k vectors have this property. Let us complete the system 

b, Ab, . . . , A”-lb i.2.2) 
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withvectorsc (k+l) , . . . . c (n) in such a way that the vectors 

b, A(,, . . . ) ;q-Q, ($I; ?-I, (4’1) ,..., 

will form a basis, and let us make the transformation x = Dy, where the 
matrix D has the form 

Since Akb is expressible linearly in terms of the vectors of the 
system (2.2) 

k-1 

we obtain after some elementary transformations the following set of 

equations: 

In these equations the elements oij 

n 

Here A is the determinant of the matrix D, while D,i is the algebraic 
cofactor of its element Ca,,. 

From Equations (2.3) it follows that the control u acts only on the 
first k coordinates; the coordinates yk+l, .,., yn are independent of u. 
Let us introduce into our discussion the matrix 

and let us denote the k-dimensional vector (l,O, . . . . 0) by b*. It is 
obvious that the vectors 
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b”, A,b*, . . . , A,k-lb* (2.4) 

are linearly independent. 'lhis means that for every point of the space 

lYl> .**, ykl there exists an admissible control. The question on the 
existence of an admissible control for points of the space I x1, . . . . x,1 
is resolved by the properties of the matrix 

a/i+,> k-+1 - . . %+1,n 

. . . . .._ . . . (2.5) 

an, kfl . * . %n 

If the roots Ai of the characteristic equation of the matrix (2.5) 
satisfy the condition 

ReL<O (i=l,...,n-Ic) (2.6) 

then there exists an admissible control for every initial state of the 
system (1.1). 

In fact, due to the linear independence of the vectors (2.4), one can 
construct an admissible control u*(r) for every point (y,", . . . . yko) of 
the space IYl, . . . . 
. . . . n) as t-b 00, 

Y&l. And since by hypothesis lim Yi = 0 (i = k + 1, 
the function a*(r) is an admissible control also for 

the point (yp, . . . . yp, ybtl, . . . . y,). 

Suppose that only m roots of the characteristic equation of the matrix 
(2.5) satisfy the condition (2.6). In this case the set of initial data 
of the system (1.1) for which there exist admissible controls is a space 
of k + m dimensions. 

In fact, the initial values of the asymptotically stable integral 
curves of Equations (2.3) fill an m-dimensional subspace. Let us denote 
this subspace by l y,, . . . . y,+,j , s > k. 

It is not difficult to see that the direct sum of the subspaces 

consists of those points for which one can construct admissible controls 
u*(r). Just as above, the function u*(r) will be an admissible control 

point (y,, . . . . Yh). 

'Ihe converse to these statements is also valid. 

If an admissible control exists for every initial state of the system 
(l.l), then the vecotrs (2.1) are either linearly independent, or for 
some k < n the vectors (2.2) are linearly independent and the matrix 
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(2.5) satisfies the condition (2.6). 

If the set of initial data for which one can construct admissible 
controls is a subspace of the kth dimension, then the vectors (2.2) are 
either linearly independent and the roots of the characteristic equation 
of the matrix (2.5) satisfy the inequality Re Xi a 0 (i = 1, . . . . n - k), 
or among the vectors (2.2) there are only k, linearly independent ones 

(kl < k), and (k - kl) of the roots of the characteristic equation of the 
matrix (2.5) have the property (2.6). 

'Ihe validity of these assertions follows from earlier considerations. 

When an admissible control u*(r) as a function of time has been con- 
structed, then one can assert that there exists an admissible control as 
a function of the system's coordinates, i.e. u*(r) = u(x(r)). We note 
here that if the admissible control u(x) exists fox the initial condition 

x(0) = xu, then an admissible control exists also for some region of the 
initial data; namely, it exists for the points x(x0, u*, t) of the 
trajectory of the system (1.1) where we have set u* = u'(r), t > 0. 

3. Let us prove the following theorem. 

~eore~ 3.1. If there exists an admissible control u(x) for the region 
G, of initial data, then there exists also an optimum control u,(x) for 
the region G,, and we have 

Here the pi are constants determined by the functional and the para- 
meters of the system under consideration. 

Proof. We shall make use of the results of 13 1 (p. 248). In accord- 
ance with these results, the minimizing of the functional (1.2) leads to 
the solution of the following variational problem. It is required to de- 
termine 

(M(x,,) = minJ(u), x0 EG,) (3.2) 
u 

where the optimum control u0 is the solution of the problem (3.2). 

Hence, the optimum control satisfies the equations 

In the case under consideration, V(u) is a positive-definite form. 
Therefore, if it is possible to find a positive-definite quadratic form 
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M(n) and a control 

‘9 b,, = -j pizi 
h’ 

k=l 

which are a solution of the problem (3.2)) then 

[M (41t,o = Knin J (u) = J (uo) 
u 

Indeed, by (3.3) we have 

dM (2) 
~ = -V(u) 

dt (3.4) 

This means that for the system (1.1) there exists a positive-definite 
form M(x) whose total derivative with respect to time is by (1.1) a 
negative-definite function. 

According to Liapunov’s theorem [ 4, p. 32 I the system (1.1) is 
asymptotically stable; hence M(n) = 0 when t = + m. 

Therefore, through integration of (3.4) with respect to t from 0 to 
+ ~0, we obtain 

Let us assume 
functional (1.2) 

l’hen the next 

that for some initial condition x0 the minimum of the 
is obtained for the control u*(x) f u,,(x), i.e. 

J (~0) > J (u*) (3.5) 

inequality will hold: 

dq + I; (CL*) > 0 

Therefore, [M(x) 1 t= o = J(u,,) < J(u*), which contradicts (3.5). 

‘Ihis means that the existence of an optimum control will have been 
proved if we show that there exists a positive-definite quadratic form 
M(x) and a linear function u = plxl + . . . + p,x, which satisfies condi- 
tion (3.2). Let us introduce the auxiliary system 

dXh. 
- =~ 
dt 

0 ; a,$$ + 0b,,E + (1 - 8) uk - (1 -- fl) X/; ch- = I* yn) (3.6) 
j=l 

where 9 is a positive parameter, 0 G 8 < 1. 

Suppose that it is required to select the ul, .*a, u,, 6 so that the 
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might take on its smallest value. 

The system (3.6) has an admissible control for every value of the 
parameter 8 > 0 and for every initial state if an admissible control 
exists for the original system (1.1). When 8 = 1, the system (3.6) is 
transformed into the system (1.1). 

Suppose that x0= G,. We shall show that an optimum control exists 
for Equation (3.6) when 8 has any value in the interval 0 G 8 < 1. 

Indeed, when 8 = 0, it follows from (3.6) that 

dx, -=- 
Lit 

Xk -1 zlh. (k-l,...,n) (3.7) 

Since the control uk acts only on the coordinate xk, we shall, in 
place of minimizing the functional J(')(u, [), try to find the minimum 
of the expression 

4 (a/~/~" -+ uk2) dt 

iJ 

for each k separately. 

From Equations (3.3) we have 

Whence 

This means that 

Since the optimum 
ally stable, we have 

Uk = (l-t4 + U,,)Tk . 

control up must make the system (3.7) asymptotic- 

UJ<@ = (1 - Vl _t Q)X,< (k==l,...,n) 

Let us write Equations (3;3) for the system (3.6) 

(3.8) 
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UkjXj -k f&E-(1- 8)Q + (1 - 8)Uk] + P)(U, E) = 0 

n fjj$f(l) 

(k = 1, , n), 2& + 2 
k=l -ek = () 

From this we obtain the next equations for the determination of the 
function M(l)(x): 

ckjxj + @/& - (1 - 8)xh. + (1 - 8)Uk + 

k=l 

Let us assume that the 
positive-definite form 

n 

M(l) p, x) = 2 

and the controls 

solution of the problem (3.2) yields some 

bij (0) xixj, (bij = bji). to< 8 0) 

1 dk+) (0,~) 
Uk' ce, X) = - a &, = jj pith’) (e) Xi 

i=l 

(3.9) 

(3.10) 

where picR)(0) and pi(O) are constants for fixed 8. 

Differentiating (for the time being, just formally) the expression 
(3.9) with respect to 8, we obtain 

&ygp i , 
j=l 

akjxj + eEbk - (1 - e) xk + (1 - e) !&.I (3.11) 

= - gdg( i akjxj $ xk)-i[(il 'g bk)z -- i (!!f!!Q!)'] 

h'zl k j=l k=l 

'lhe validity of the operation of differentiation can be established 
if it is possible to determine the coefficients of the form 8M(1)(8,z)/de 
by means of (3.11). In order to accomplish this one has to substitute 
into (3.11) the form M(')(8, x) 
of xi and X.X.. 

and equate the coefficients of like powers 
Let us show that in this manner we can actually obtain 

equations f&'the coefficients of the form dM'1)(8, r)/c?f3 which have a 
unique solution &ij<e)/dt. Let us denote by W(O) the Jacobian of the 
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system of equations for the determination of the dbij(e)/de obtained from 
(3.11). 

If for some value 19 > 0 the problem (3.2) has for its solution a form 
M(l){@, xl, then the right-hand side of the relation (3.11) will be some 
quadratic form. The left-hand side of (3.11) is the total derivative of 
the function dU(‘) (8, z)/‘r?0, evaluated on the basis of (3.6) for the 
value of 8 under consideration. Since M (l)(0, X) is a positive-definite 
form, and since dMt1)(8, x)/dt is a negative-definite quadratic form for 
the controls (3.10) as a consequence of (3.91, the system (3.6) will be 
asymptotically stable for the given 8. ‘Iberefore [4, p. 61 1 the coeffi- 
cients db. .(e)/de 0f dbP(e, x)/se can be uniquely determined by means 
of (3.11)‘& some functions of the bij(0), i, j = 1, . . . , n, and of the 
parameter 8: 

dbij (0) 
(s, e =: 1, . , n) (3.12) 

Starting with the relation (3.111 one cm show that the functions (Pij 
depend continuously on the b.. and on 8 for all those values of b. . and 
8 for which the Jacobian W(Bj’is distinct from zero. ‘Ihis makes it’ 
possible to determine the coefficients b..(8) for all values of the para- 
meter in the interval 0 G 8 Q 1. In actor “d ante with what has been said 
above, it is sufficient for this purpose to show that the Jacobian W(0) 
is different from zero, 0 Q 8 Q 1, and that for no values of i, j and 0, 
can the following relations hold: 

lim bij (0) = cc when 0 + 01 - 0 (3.13) 

Let us consider the solution of the system (3.12) with the initial 
condition 8 = 0, bij(0) (the coefficients bij(Of of M’(‘)(O, ~1 are 
completely determined by Formulas (3.8)). ‘Ihis solution exists at least 
in a small enough neighborhood 0 6; 6 G fi of the point 8 = 0. It is our 
problem to show that this solution can be extended to all 8 in the 
interval 0 G 8 Q 1. 

Let us select an admissible control u(e, z), E(@, x) so that the 
following inequality be satisfied 

J(l) (U (0, Z), g (0, X’)) < E, (C)G 0 <I) (3.14) 

where E= const > 0. Such a choice of an admissible control is possible 
on the basis of the results of Section 2 of the present article and by 
the hypothesis of the theorem. 

Let us suppose that the solution of bation (3.12) is extendible only 
to the neighborhood 0 < 8 < 8, < 1 of the point 0 = 0. lhis can happen in 
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two cases. Namely, if for 8 -t 6, - 0 the system (3.6) loses its asymp- 
totic stability, and hence it is impossible to determine the coefficients 
in c?M(‘)(M!J, x>/af3 in the form (3.12) when 8 = 8,, or if for 8 + e1 - 0 
Equations (3.13)‘apply. 

Let us consider the first case. The form M(‘)(8, x) must lose its 
character of being positive-definite when 8 + 8, - 0. This is impossible, 
for M(‘)(8, x) gives a minimum for (1.2). ‘Ihis means the first case can; 
not occur, If, however, Equations (3.13) apply, then for values of 8 
near enough to 8, we would have 

J(l) (UO (0,x), r;O (0,x)) > E 

which is impossible because of the fact that the admissible control 
u(e, x) satisfies the inequality (3.14). ‘Ihis completes the proof of the 
theorem. 

The author expresses her gratitude to N.N, Krasovskii for valuable 
advice. 
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